

DPT GENIE ENERGETIQUE ET ENVIRONNEMENT ENERGETICS AND ENVIRONMENTAL ENGINEERING

INSA Campus LyonTech - 9 rue de la Physique Batiment Sadi Carnot - 69621 VILLEURBANNE Phone 0472438430 E-mail : gen-s@insa-lyon.fr

Fluid Mechanics

Fluid Mechanics

AIMS

IDENTIFICATION

CODE : GEN-3-S1-EC-MFLU ECTS : 3.0

HOURS	
Lectures :	22.0 h
Seminars :	20.0 h
Laboratory :	4.0 h
Project :	0.0 h
Teacher-student	
contact :	46.0 h
Personal work :	25.0 h
Total :	71.0 h

ASSESSMENT METHOD

1 test of 3h Pratical works evaluation

TEACHING AIDS

Lecture slides, polycop, form and supervised work subjects

TEACHING LANGUAGE

French

CONTACT

M. JAY Jacques jacques.jay@insa-lyon.fr This course falls under the Energy - Processes 1 (GEN-3-ue-NRJ1) teaching unit (CE) and contributes to the following general competences:

- A1 Analyse a real or virtual system (or problem) (level 2)
- A2 Use a model of a real or virtual system (level 2)
- A3 Implement an experimental approach (level 2)
- A5 Process data (level 2)

A6 Communicate an analysis or a scientific approach with scenarios adapted to their speciality [level 2]

C1 Design, size, manage and optimise energy systems in complex and varied contexts (city, industry, transport) [level 1]

C2 Design, size and optimise process engineering installations (level 1)

This course is designed to enable the student to work on and be assessed on the following knowledge

- Notion of imbalance and transport
- Descriptions of fluid motion, different flow regimes
- Laws describing fluid motion (pressure, gravity, inertia, viscosity)
- Dimensionless numbers in fluid mechanics
- Principle of lift and drag on objects placed in a flow
- Notions of boundary layers

By allowing the student to work on and be assessed on the following skills:

- Conduct mass, momentum and kinetic energy balances
- Study, model and dimension static and dynamic hydraulic and aeraulic flows in perfect and real fluids

- Choose a control volume for the study and dimensioning of hydraulic and aeraulic installations

- Perform dimensional analysis and apply similarities to hydraulic and airflow systems
- Use laminar and turbulent boundary layer assumptions for flow modelling

CONTENT

- Fluid Characteristics: viscosity, newtonian fluid, compressibility,....
- Fluid Statics: basic law of hydrostatic, Archimede theorem, force on a plane surface
- Ideal Fluid Bernoulli Equation Applications (Pitot tube, Venturi Flowmeter, ...)
- Fluid Kinematics: Lagrangian and Eulerian descriptions; material derivative; system and control volume; Reynolds transport theorem

- Finite Control Volume Analysis: conservation of mass; momentum, kinetic energy and energy budgets

- Differential analysis of flows: continuity equations; stress-deformation relationships; Euler and Navier-Stokes equations; elementary solutions

- Dimensional Analysis and Similitude: Vaschy-Buckingham theorem, some important dimensionless numbers in fluid mechanics, physical sigbnificance and relationship with Navier-Stokes equations, similitude laws for models

- External Flows: laminar and turbulent boundary layer; flow separation; force around an immersed body; drag and lift

BIBLIOGRAPHY

- S. CANDEL Mécanique des Fluides Dunod 2001
- P. CHASSAING Mécanique des Fluides, Eléments d'un premier parcours Cepadues 2000
- R. COMOLET Mécanique expérimentale des Fluides tomes 1 et 2 Dunod 2002

B.R. MUNSON, D.F. YOUNG, T.H. OKISHII - Fundamentals of Fluid Mechanics- 5th Edition, John Wiley Sons 2006

INSA LYON

Campus LyonTech La Doua

20, avenue Albert Einstein - 69621 Villeurbanne cedex - France Phone +33 (0)4 72 43 83 83 - Fax +33 (0)4 72 43 85 00 www.insa-lyon.fr

PRE-REQUISITE

Mechanics of material point and solid body Resolution of ordinary differential equations Calculation of partial derivatives Tensorial calculus and classical operators (gradient, divergence, curl)

INSA LYON

Campus LyonTech La Doua 20, avenue Albert Einstein - 69621 Villeurbanne cedex - France Phone +33 (0)4 72 43 83 83 - Fax +33 (0)4 72 43 85 00 www.insa-lyon.fr